Corrected variant of the problem.

https://www.linkedin.com/feed/update/urn:li:activity:6636691762322767872
In any triangle with usual notations, prove that

$$
(a+2 r)(b+2 r)(c+2 r) \geq 2 R^{3}(\sqrt{3}+5) .
$$

Solution by Arkady Alt, San Jose, California, USA.
We will prove that in fact holds double inequality

$$
\begin{equation*}
16 r^{3}(\sqrt{3}+5) \leq(a+2 r)(b+2 r)(c+2 r) \leq 2 R^{3}(\sqrt{3}+5) . \tag{1}
\end{equation*}
$$

or, noting that $2(\sqrt{3}+5)=(\sqrt{3}+1)^{3}$ we rewrite (1) equivalently as
(2)

$$
2 r(\sqrt{3}+1) \leq \sqrt[3]{(a+2 r)(b+2 r)(c+2 r)} \leq R(\sqrt{3}+1)
$$

1. By AM-GM Inequality we have

$$
\sqrt[3]{(a+2 r)(b+2 r)(c+2 r)} \leq \frac{1}{3} \sum(a+2 r)=\frac{a+b+c+6 r}{3}
$$

and since $2 r \leq R$ (Euler's Inequality) and $a+b+c \leq 3 \sqrt{3} R\left(a+b+c \leq \sqrt{3\left(a^{2}+b^{2}+c^{2}\right)}\right.$
and $a^{2}+b^{2}+c^{2} \leq 9 R^{2}$) we obtain $\sqrt[3]{(a+2 r)(b+2 r)(c+2 r)} \leq R(\sqrt{3}+1)$.
2. By replacing in Huygens Inequality $(x+1)(y+1)(z+1) \geq\left((x y z)^{1 / 3}+1\right)^{3}$ (x, y, z) with $\left(\frac{a}{2 r}, \frac{b}{2 r}, \frac{b}{2 r}\right)$ we obtain

$$
\begin{aligned}
& \quad\left(\frac{a}{2 r}+1\right)\left(\frac{b}{2 r}+1\right)\left(\frac{b}{2 r}+1\right) \geq\left(\sqrt[3]{\frac{a}{2 r} \cdot \frac{b}{2 r} \cdot \frac{b}{2 r}}+1\right)^{3} \Leftrightarrow \\
& \sqrt[3]{(a+2 r)(b+2 r)(c+2 r)} \geq \sqrt[3]{a b c}+2 r . \\
& \text { Since }(a b c)^{1 / 3}+2 r \geq 2 r(\sqrt{3}+1) \Leftrightarrow(a b c)^{1 / 3} \geq 2 r \sqrt{3} \Leftrightarrow a b c>24 r^{3} \sqrt{3} \Leftrightarrow
\end{aligned}
$$

$4 R r s>24 r^{3} \sqrt{3} \Leftrightarrow R s>6 r^{2} \sqrt{3}$, where latter inequality holds because $R \geq 2 r$ and $s \geq 3 \sqrt{3} r$ then $(a+2 r)(b+2 r)(c+2 r) \geq(2 r(\sqrt{3}+1))^{3}$

