Corrected variant of the problem.

https://www.linkedin.com/feed/update/urn:li:activity:6636691762322767872 In any triangle with usual notations, prove that

$$(a+2r)(b+2r)(c+2r) \ge 2R^3(\sqrt{3}+5).$$

Solution by Arkady Alt, San Jose ,California, USA.

We will prove that in fact holds double inequality

- (1) $16r^3(\sqrt{3}+5) \le (a+2r)(b+2r)(c+2r) \le 2R^3(\sqrt{3}+5).$
- or, noting that $2(\sqrt{3} + 5) = (\sqrt{3} + 1)^3$ we rewrite (1) equivalently as
- (2) $2r\left(\sqrt{3}+1\right) \leq \sqrt[3]{(a+2r)(b+2r)(c+2r)} \leq R\left(\sqrt{3}+1\right).$

1. By AM-GM Inequality we have

 $\sqrt[3]{(a+2r)(b+2r)(c+2r)} \leq \frac{1}{3} \sum (a+2r) = \frac{a+b+c+6r}{3}$ and since $2r \leq R$ (Euler's Inequality) and $a+b+c \leq 3\sqrt{3}R$ ($a+b+c \leq \sqrt{3(a^2+b^2+c^2)}$ and $a^2+b^2+c^2 \leq 9R^2$) we obtain $\sqrt[3]{(a+2r)(b+2r)(c+2r)} \leq R(\sqrt{3}+1)$. **2**. By replacing in Huygens Inequality $(x+1)(y+1)(z+1) \geq ((xyz)^{1/3}+1)^3$ (x,y,z) with $(\frac{a}{2r}, \frac{b}{2r}, \frac{b}{2r})$ we obtain $(\frac{a}{2r}+1)(\frac{b}{2r}+1)(\frac{b}{2r}+1) \geq (\sqrt[3]{\frac{a}{2r}\cdot\frac{b}{2r}\cdot\frac{b}{2r}}+1)^3 \Leftrightarrow$ $\sqrt[3]{(a+2r)(b+2r)(c+2r)} \geq \sqrt[3]{abc}+2r$. Since $(abc)^{1/3}+2r \geq 2r(\sqrt{3}+1) \Leftrightarrow (abc)^{1/3} \geq 2r\sqrt{3} \Leftrightarrow abc > 24r^3\sqrt{3} \Leftrightarrow$ $4Rrs > 24r^3\sqrt{3} \Leftrightarrow Rs > 6r^2\sqrt{3}$, where latter inequality holds because $R \geq 2r$ and

 $s \ge 3\sqrt{3} r$ then $(a+2r)(b+2r)(c+2r) \ge (2r(\sqrt{3}+1))^3$